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Abstract
A solution for the inhomogeneous telegraph equation for a point source moving
with the velocity of light is constructed. We find relations describing both the
transient and steady-state wave processes. The solutions obtained are used to
define electromagnetic waves in a conductive medium. The case of a source
moving faster than light is also given.

PACS numbers: 41.20.Jb, 03.50.De, 41.60.−m

1. Introduction

The aim of this paper is to construct transient solutions to the inhomogeneous telegraph and
Maxwell’s equations describing waves formed by a moving point source. We suppose that the
source starts at some fixed moment of time and travels along a straight line with the velocity
of light (for scalar waves, with the velocity of wavefront). Using the Olevsky theorem [1] we
generalize the method applied for the construction of the analogous solutions in free space
[2], we obtain an explicit solution of the initial-value problem to the 3D telegraph equation in
space–time representation, and discuss the application of these solutions to the description of
scalar and electromagnetic waves in dispersive media. A solution is also given for the source
moving with a velocity greater than the velocity of light. The results obtained are similar
to previously published solutions describing steady-state localized waves in dispersive media
[3–5] and spherical waves in a conductive medium produced by sources on an expanding
sphere [6].

2. Method used

First, we construct an axisymmetric solution of the initial-value problem in the cylindrical
coordinates ρ, ϕ, z(
∂2
τ − (1/ρ)∂ρ(ρ∂ρ)− ∂2

z − a2)ψ = (4π/c)j ψ = j ≡ 0 τ < 0 (1)
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where τ = ct is the time variable, c is the velocity of light and the real constant a2 determines
the wave dispersion. We write the source function j as

j = (1/(2πρ))h(τ )h(z)δ(z− βτ)f (τ ) (2)

where h(τ) is the Heaviside function,δ(x) is the Dirac function,f (τ) is an arbitrary continuous
function and β > 0 is an arbitrary parameter.

Separating the radial variable ρ by means of the Fourier–Bessel transform

g(ρ) =
∫ ∞

0
ds sJ0(sρ)g(s) g(s) =

∫ ∞

0
dρ ρJ0(sρ)g(ρ) (3)

where J0(sρ) is the Bessel function of the first kind, from (1) and (2) we obtain
(
∂2
τ − ∂2

z + (s2 − a2)
)
ψ(s) = 2

c
h(z)h(τ )δ(z − βτ)f (τ ) ψ(s) ≡ 0 τ < 0 (4)

Using the Olevsky theorem (see the appendix) we write the Riemann function in the form

R = J0(s
√
(τ − τ ′)2 − (z − z′)2)

−
∫ z−z′

τ−τ ′
dξ

∂

∂ξ
I0(a

√
ξ2 − (z− z′)2) · J0(s

√
(τ − τ ′)2 − ξ2)

where I0(x)is the modified Bessel function, and we obtain the solution to problem (4) with
the help of the Riemann formula

ψ(s) = 1

c

∫ τ

0
dτ ′

∫ −τ ′+z+τ

τ ′+z−τ
dz′f (τ ′)h(z′)δ(z′ − βτ ′)R(s, z, τ, z′, τ ′).

Then the solution to problems (1) and (2) can be represented by the integral

ψ = 1

c

∫ τ

0
dτ ′f (τ ′)

∫ −τ ′+z+τ

τ ′+z−τ
dz′h(z′)δ(z′ − βτ ′)I (ρ, z′, τ ′) (5)

where

I (ρ, z′, τ ′) =
∫ ∞

0
ds sJ0(sρ)J0(s

√
(τ − τ ′)2 − (z− z′)2)

−
∫ z−z′

τ−τ ′
dξ

∂

∂ξ
I0(a

√
ξ2 − (z− z′)2)

∫ ∞

0
ds sJ0(sρ)J0(s

√
(τ − τ ′)− ξ2).

Putting ∫ ∞

0
ds sJ0(sρ)J0(s

√
(τ − τ ′)− x2) = 1

ρ
δ(ρ −

√
(τ − τ ′)− x2) (6)

where x2 denotes (z− z′)2 or ξ2, from (5) we obtain

ψ = 1

cρ

∫ τ

0
dτ ′f (τ ′)

∫ −τ ′+z+τ

τ ′+z−τ
dz′h(z′)δ(βτ ′ − z′)×

[
δ(ρ −

√
(τ − τ ′)2 − (z− z′)2)

−
∫ z−z′

τ−τ ′
dξ

∂

∂ξ
I0(a

√
ξ2 − (z− z′)2) δ(ρ −

√
(τ − τ ′)2 − ξ2)

]
. (7)

This relation gives an algorithm for constructing a solution to the scalar problem (1) and (2).
So, in the special case where a point source propagates with the velocity of light, β = 1, using
(7) we obtain:

ψ = ψ0 + ψa = h(τ − r)
1

c(τ − z)
f (
)− 1

cρ

∫ τ

0
dτ ′f (τ ′)×

∫ −τ ′+z+τ

τ ′+z−τ
dz′h(z′)δ(z′ − τ ′)

×
∫ z−z′

τ−τ ′
dξδ(ρ −

√
(τ − τ ′)2 − (z− z′)2)

∂

∂ξ
I0(a

√
ξ2 − (z− z′)2) (8)
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where 
 = 1
2

(
τ + z − ρ2

τ−z
)
, r =

√
ρ2 + z2. The term ψ0 is the known solution of the

inhomogeneous wave equation (see [2, 7]), which describes the family of localized waves
of Brittingham’s type in free space. We calculate the item ψa by using the property of the
δ-function and find the limits of integration with respect to the variable τ ′ with the help of
the (τ ′, z′)-plane diagram (see [2] for details). Summarizing the results, we express the scalar
solution ψ in the form

ψ = h(τ − r)
1

c(τ − z)
f (
) +

a

c
√

2(τ − z)

∫ 


0
dτ ′f (τ ′)

1√

− τ ′ I1(a

√
2(τ − z)

√

− τ ′).

(9)

Hence we may write

ψ = 1

c(τ − z)
f (
) +

a

c

√
2


τ − z

∫ 1

0
ds f (
(1 − s2)) I1(a

√
2(τ − z)
 · s) τ − r > 0.

(10)

In the particular case of f = 1 we obtain the simple expression

ψ = h(τ − r)
1

c(τ − z)
I0 (a

√
τ 2 − r2).

3. Applications of the obtained solution

Here we discuss how to use examples of the application of the results obtained in the previous
section, for the description of transient and steady-state scalar and electromagnetic waves.

3.1. Transient and steady-state waves

Let us construct the solution of the telegraph equation supposing that a > 0 and that
f (τ) = exp(ikτ), where k > 0 is constant. Then, from (10), one obtains

ψ = 1

c(τ − z)

[
J0(æ) + iw

∫ 1

0
ds s e

i
2w(1−s2)J0(æs)

]
τ − r > 0 (11)

where w = 2k
, and æ = ia
√

2(τ − z)
.
We express (11) in terms of Lommel’s functions of two variables

Un(w,æ) =
∞∑
m=0

(−1)m
(w

æ

)n+2m
Jn+2m(æ)

Vn(w,æ) =
∞∑
m=0

(−1)m
( æ

w

)n+2m
J−(n+2m)(æ)

by using the following relation (see 16.53 in [8])

wn

æn−1

∫ 1

0
ds snJn−1(æs) exp

(
± i

2
w(1 − s2)

)
= Un(w,æ) ± iUn+1(w,æ). (12)

In the case of |w/æ| < 1, from (11), we obtain

ψ = 1

c(τ − z)
(U0(w,æ) + iU1(w,æ)). (13)

In the opposite case where |w/æ| > 1 we use the relation [8]

U0(w,æ) + iU1(w,æ) = iV1(w,æ) + V2(w,æ) + exp

(
i

2

(
w +

æ2

w

))
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so that

ψ = 1

c(τ − z)
(iV1(w,æ) + V2(w,æ)) +

1

c(τ − z)
exp

(
i

2

(
w +

æ2

w

))
= ψ(1) + ψ(2). (14)

This expression describes both the transient and the steady-state processes. The latter term
ψ(2) is the steady-state solution of the telegraph equation

ψ(2) = 1

c(τ − z)
exp

[
i

2

(
2k
− a2

k
(τ − z)

)]
(15)

which, as it follows from the condition |w/æ| > 1, exists only inside the oblate ellipsoid of
revolution around the z-axis

ρ2

(τ/
√

1 + α2)2
+
(z− α2τ/(1 + α2))2

(τ/(1 + α2))2
= 1 α2 = a2/k2 (16)

Note that we obtain the general description of steady-state waves in dispersive media, including
those akin to Brittingham’s localized waves in free space, from expressions (13) and (14)
replacing ik by a complex constant γ in (15) (see expression (26) in [5]). These waves exist
inside the expanding surface (16) where the parameter α2 = a2/|γ |2.

3.2. Scalar waves in lossy media

Let us construct a solution where the initial-value problem for the telegraph equation with the
dispersion term 2a∂τψ , where a > 0, that describes the formation of scalar waves in lossy
media(
∂2
τ + 2a∂τ − (1/ρ)∂ρ(ρ∂ρ)− ∂2

z

)
ψ = (4π/c)j ψ = j ≡ 0 τ < 0. (17)

Putting

ψ = exp(−aτ)u(ρ, z, τ )
we obtain(
∂2
τ − ∂2

z − (1/ρ)∂ρ(ρ∂ρ)− a2) u = (4π/c) exp(aτ)j u ≡ 0 τ < 0 (18)

which enables us to write the solution of problem (17) by using expression (9) in the form

ψ = h(τ − r)
1

c(τ − z)
e−a(τ−
)f (
) +

a

c

√
2


τ − z
e−aτ

∫ 


0
dτ ′ eaτ

′
f (τ ′)

1√

− τ ′

× I1(a
√

2(τ − z)
√

− τ ′). (19)

Hence in the particular case of f (τ) = exp(ikτ), by using expression (13) and (14), for
|w/æ| < 1, we obtain

ψ = 1

c(τ − z)
e−aτ (U0(w,æ) + iU1(w,æ)) (20)

while for |w/æ| > 1 one has

ψ = 1

c(τ − z)
e−aτ (iV1(w,æ) + V2(w,æ)) +

1

c(τ − z)
e
−aτ+ i

2

(
w+ æ2

w

)
. (21)

Here æ = ia
√

2(τ − z)
,w = 2(k − ia)
, |w/æ| = (1/α)
√
τ 2 − r2/(τ − z) and the

parameter of the ellipsoid is α = a/
√
k2 + a2.

The steady-state waves in lossy media are described by the latter term in (21)

ψ
(2)
l = 1

c(τ − z)
exp

[
−aτ +

i

2

(
2(k − ia)
− a2

(k − ia)
(τ − z)

)]
. (22)
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Thus, in the case where k = 0, we get a localized wave inside the ellipsoid (16) with the
parameter α = 1

ψ
(2)
l = 1

c(τ − z)
exp

[
−1

2
a
ρ2

τ − z

]
(23)

which differs from the axisymmetric wave of Brittingham’s type. It is easy to verify that
expression (23) satisfies the parabolic equation(

(1/ρ)∂ρ(ρ∂ρ)− 2a∂ξ1

)
ψ
(2)
l = 0 ξ1 = τ − z (24)

excluding the point (ρ = 0, ξ1 = 0). One can treat the limit to this solution for τ → ∞ as a
steady-state wave with the singularity δ(ρ)/ρ on the plane front ξ1 = 0. Note that expression
(23) has been obtained by Bateman as a specific solution of equation (24) [9].

3.3. Electromagnetic waves in conducting media

The results obtained permit us, in principle, to derive the electromagnetic vectors �E and �B.
We apply solutions of the inhomogeneous telegraph equation (17) to the description of TM
electromagnetic waves in a conductor. Treating j as the z-component of the electric current
density vector, we use the expressions [9]

Eρ = ∂2
ρz
 Ez = (−∂2

τ − 2a∂τ + ∂2
z

)

 Bϕ = −∂ρ(∂τ + 2a)
 (25)

where a = (2πσ/c), σ is the conductivity and the scalar function
 is defined by the relation
(∂τ + 2a)
 = ψ . Then we obtain immediately the non-zero component of the magnetic
induction vector. To find the electric-field strength components, one has to integrate the above
relation with respect to the time variable. So, one can get the non-zero components of vectors
�E, �B via the expressions

Eρ = −∂2
ρξ1

 Ez = −2a∂ξ1
 Bϕ = − (

∂2
ρξ1

+ 2a∂ρ
)



where the function
(ρ, ξ1) is a solution of the problem(
∂ξ1 + 2a

)

 = ψ

(2)
l (ξ1, ρ) 
(0, ρ) = 0.

4. Concluding remarks

The method applied for solving the problem of wave formation by a point source moving with
the velocity of light can also be used in the case of sources travelling slower or faster than
light. We obtain the general solution to problem (1) supposing that the source function j is
given by expression (2), where β = v/c > 1, v denotes the velocity of the point source. Then,
in the space–time domain r < τ , one has

ψ = ψ0 + ψa = 1

cR
f (
+) +

a

c

∫ 
+

0
dτ ′F(τ ′, τ, ρ, z) (26)

while inside the circular cone with a vertex at the point ρ = 0, z = βτ and z =
−ρ

√
β2 − 1 + βτ and outside the sphere τ = r the solution takes the form

ψ = ψ0 + ψa = 1

cR
(f (
+) + f (
−)) +

a

c

∫ 
+


−
dτ ′F(τ ′, τ, ρ, z). (27)

Here

R =
√
(z− βτ)2 − (β2 − 1)ρ2, 
± = (−(τ − βz)± R)/(β2 − 1),

F = f (τ ′)
1√

(τ − τ ′)2 − ρ2 − (z− βτ ′)2
I1(a

√
(τ − τ ′)2 − ρ2 − (z − βτ ′)2).
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In the case where τ < r the observation sector is limited by the conical surface z =
ρ/(β2 − 1)1/2. The first terms in expressions (26) and (27) describe waves in free space
[10]. The above solution requires an individual investigation, which is not a trivial problem.

On the basis of expressions (9) and (26) we can easily interpret similar solutions of the
telegraph equation. (i) Solution (26) describes waves produced by a point source moving with
a velocity less than the velocity of the wavefront (the velocity of light) whenβ ∈ (0, 1). Hence,
one obtains, (ii) the scalar wavefunction (9) in the limited case β → 1−. (iii) Supposing that
β is equal to zero, one gets wavefunction for a point source at rest from (26). This permits us
to obtain (iv) the Green function for the 3D telegraph equation. Results (iii) and (iv) are given
in [12].

Notably, the method discussed above for obtaining solutions (9), (26) and (27) is easier
than that employing Green’s function.
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Appendix

The generalization of the solution algorithm of the initial-value problem (1) is based on the
theorem [1]:
Let R1(z, τ ; z′, τ ′) and R2(z, τ ; z′, τ ′) be the Riemann functions of the equations(

∂2
z − ∂2

τ + p1(z)
)
ψ = 0 and

(
∂2
z − ∂2

τ + p2(τ )
)
ψ = 0.

Then the Riemann function of the equation(
∂2
z − ∂2

τ + p1(z) + p2(τ )
)
ψ = 0

may be written as

R̃ = R1(z, τ ; z′, τ ′) +
∫ z−z′

τ−τ ′
dξR1(z, ξ; z′, 0)

∂

∂ξ
R2(ξ, τ ; 0, τ ′).

The application of the above theorem essentially simplifies the construction of solutions
of different initial-value problems akin to problem (1) (see, for example, [6, 11]). Here,
we have p1 = a2 and p2 = −s2, hence R1 = I0(a

√
(τ − τ ′)2 − (z− z′)2) and R2 =

J0(s
√
(τ − τ ′)2 − (z− z′)2).
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